Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Gustavo Portalone

Chemistry Department, University of Rome I 'La Sapienza', P.Ie A. Moro, 5, I-00185 Rome, Italy

Correspondence e-mail: g.portalone@caspur.it

Key indicators

Single-crystal X-ray study T = 298 KMean $\sigma(\text{C}-\text{C}) = 0.008 \text{ Å}$ R factor = 0.028 wR factor = 0.072 Data-to-parameter ratio = 9.5

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

Molecules of *p*-bromoanilinium chloride, $C_6H_7BrN^+ \cdot Cl^-$ or $[BRANH]^+ \cdot Cl^-$, are linked *via* $N^+ - H \cdot \cdot \cdot Cl^-$ hydrogen bonds to form $R_4^2(8)$ supramolecular synthons parallel to the *bc* plane.

p-Bromoanilinium chloride

Received 28 July 2005 Accepted 15 August 2005 Online 31 August 2005

Comment

Owing to the paramount importance of the hydrogen bond in chemical, physical and biochemical processes, in recent decades the number of reports on this interaction has grown enormously. In addition, much attention has been devoted to non-classical hydrogen bonds and their role in crystal engineering and design, and this has been extensively reviewed (e.g. Desiraju, 1989). This interest has subsequently been extended to a specific class of compounds, namely solvent-free 4-halopyridinium halides and (mono)haloanilinium halides, and the interplay between hydrogen bonds and halogenhalogen contacts has been investigated (Freytag et al., 1999; Gray & Jones, 2002). More recently, comparison of the crystal structures of solvent-free 4-X-substituted anilines (X is C = C - H, Cl, Br or I; Dev *et al.*, 2003) has shown that ethynyl, chloro and bromo, but not iodo, substituents exert exactly the same role on crystal packing. To date, the crystal structures of p-fluoro- and p-chloroanilinium hydrochlorides have been reported in the literature (Colapietro et al., 1981; Ploug-Sørensen & Andersen, 1985). Accordingly, in order to ascertain any topological similarities between p-haloanilinium hydrochlorides, this paper reports the crystal structure of *p*-bromoaniline hydrochloride or $[BRANH]^+ \cdot Cl^-$, (I).

The asymmetric unit of (I) comprises a planar monoprotonated *p*-bromoanilinium cation and a Cl⁻ anion (Fig. 1). With regard to the aromatic ring, the bond lengths and angles agree, within experimental error, with the axial symmetry observed in most *para*-disubstituted benzene derivatives (Table 1). The Br substituent is displaced out of the leastsquares plane of the aromatic ring by only 0.021 (5) Å and the C4-Br bond length of 1.892 (5) Å is experimentally the same as those observed in *p*-bromoanilinium bromide hemihydrate [1.901 (4) Å; Gray & Jones, 2002] and *p*-dibromobenzene [1.890 (3) Å; Schultz *et al.*, 1988].

In the NH₃⁺ group, the C1–N distance of 1.463 (6) Å agrees with the values reported for *p*-substituted halo-

Printed in Great Britain - all rights reserved

© 2005 International Union of Crystallography

Figure 1

A drawing of (I), showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level.

anilinium cations [1.457 (3)-1.468 (3) Å] (Colapietro et al., 1981; Ploug-Sørenson & Andersen, 1985; Gray & Jones, 2002). A comparison of the molecular geometry of (I) with that of the free base (Dev et al., 2003) shows that the C1–N bond is lengthened by ~ 0.07 Å and the ring angle is widened by $\sim 4.2^{\circ}$, results that are ascribed to protonation in the former. Consistent with previous cases, one of the H atoms of the NH_3^+ group is almost eclipsed with the benzene ring (Colapietro et al., 1980, 1981, 1982; Ploug-Sørenson & Andersen, 1985; Gray & Jones, 2002).

The hydrogen-bonding scheme of (I) involves all H atoms of the NH_3^+ group (Fig. 2 and Table 2) and consists entirely of $N^+-H\cdots Cl^-$ interactions; the average $N^+\cdots Cl^-$ distance is 3.147 (5) Å. The NH_3^+ and Cl^- ions are connected through N^+ -H··· Cl⁻ hydrogen bonds parallel to *bc*, forming just one $R_4^2(8)$ supramolecular synthon (Etter *et al.*, 1990). Roughly perpendicular to the bc plane, there is one Cl \cdots Br contact of 3.587 (4) Å per molecule. A similar topology has been found hydrochloride in *p*-chloroaniline (Ploug-Sørenson & Andersen, 1985) and in *p*-toluidine hydrochloride (Colapietro et al., 1982), while the network of hydrogen bonds is different from that occurring in the p-fluoro-, p-cyano- (Colapietro et al., 1981) and p-aminoaniline hydrochlorides (Colapietro et al., 1980). This study supports the observed supramolecular similarity for 4-haloanilines (Dey et al., 2003), because the replacement of Cl with Br causes no significant change in their crystal structure.

Experimental

p-Bromoaniline hydrochloride was obtained as a white powder by adding concentrated HCl to an ethanol solution of the free base (Sigma-Aldrich, 99% purity, 0.001 mol), and this was recrystallized by slow evaporation of an aqueous solution of (I).

Crystal data

C₆H₇BrN⁺·Cl⁻ $M_{\rm m} = 208.49$ Monoclinic, $P2_1/c$ a = 8.629 (2) Å b = 9.784(2) Å c = 9.863 (9) Å $\beta = 105.61 (5)^{\circ}$ V = 802.0 (8) Å³ Z = 4

 $D_x = 1.727 \text{ Mg m}^{-3}$ Mo $K\alpha$ radiation Cell parameters from 12 reflections $\theta = 15-20^{\circ}$ $\mu=5.37~\mathrm{mm}^{-1}$ T = 298 (2) K Prism, colourless $0.18 \times 0.18 \times 0.15~\text{mm}$

Figure 2

A packing diagram for (I), viewed down the *a* axis. Hydrogen bonds are indicated by dashed lines.

Data collection

Enraf-Nonius CAD-4F diffractometer $\theta/2\theta$ scans Absorption correction: ψ scan (North <i>et al.</i> , 1968)	$R_{int} = 0.011$ $\theta_{max} = 23.5^{\circ}$ $h = -9 \rightarrow 9$ $k = 0 \rightarrow 10$ $l = 0 \rightarrow 11$ 2 stored are positions
$T_{\min} = 0.390, T_{\max} = 0.450$ 3628 measured reflections 1113 independent reflections 781 reflections with $I > 2\sigma(I)$ <i>Refinement</i>	3 standard reflections frequency: 33 min intensity decay: 5%
Refinement on F^2 $R[F^2 > 2\sigma(F^2)] = 0.028$ $wR(F^2) = 0.072$ S = 1.10	$w = 1/[\sigma^{2}(F_{o}^{2}) + (0.0331P)^{2} + 2.5739P]$ where $P = (F_{o}^{2} + 2F_{c}^{2})/3$ $(\Delta/\sigma)_{max} = 0.001$

 $\Delta \rho_{\rm max} = 0.57 \ {\rm e} \ {\rm \AA}^{-3}$ $\Delta \rho_{\rm min} = -0.56 \text{ e } \text{\AA}^{-3}$

H-atom parameters constrained

Table 1

781 reflections

82 parameters

Selected geometric parameters (Å, °).

Br1-C4	1.892 (5)	C2-C3	1.385 (8)
N1-C1	1.463 (6)	C3-C4	1.376 (8)
C1-C2	1.372 (7)	C4-C5	1.367 (8)
C1-C6	1.371 (7)	C5-C6	1.373 (7)
N1-C1-C2	119.5 (5)	Br1-C4-C5	120.3 (4)
N1-C1-C6	119.0 (5)	Br1-C4-C3	119.4 (4)
C2-C1-C6	121.5 (5)	C3-C4-C5	120.3 (5)
C1-C2-C3	119.3 (5)	C4-C5-C6	120.9 (5)
C2-C3-C4	119.4 (5)	C1-C6-C5	118.7 (5)

Table 2			
Hydrogen-bond	geometry	(Å,	°).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D{\cdots}A$	$D - \mathbf{H} \cdots A$
N1-H11···Cl1	0.93	2.24	3.143 (5)	164
$N1 - H12 \cdots Cl1^i$	0.85	2.31	3.136 (5)	162
$N1-H13\cdots Cl1^{ii}$	0.85	2.31	3.161 (4)	171

Symmetry codes: (i) $x, -y + \frac{1}{2}, z + \frac{1}{2}$; (ii) $-x - 1, y + \frac{1}{2}, -z - \frac{1}{2}$.

All H atoms were found in a difference map and kept fixed during the final refinement (C–H = 0.84–1.02 Å and N–H = 0.85–0.93 Å), with U_{iso} (H) values equal to 1.2 U_{eq} of the parent atom.

Data collection: XCS (Colapietro *et al.*, 1992); cell refinement: XCS; data reduction: XCS; program(s) used to solve structure: SIR97 (Altomare *et al.*, 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97.

References

- Altomare, A., Burla, M. C., Camalli, M., Cascarano, G., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.
- Colapietro, M., Cappuccio, G., Marciante, C., Pifferi, A., Spagna, R. & Helliwell, J. R. (1992). J. Appl. Cryst. 25, 192–194.
- Colapietro, M., Domenicano, A. & Portalone, G. (1980). Acta Cryst. B36, 354–358.

- Colapietro, M., Domenicano, A. & Portalone, G. (1981). Acta Cryst. B37, 387–394.
- Colapietro, M., Domenicano, A. & Portalone, G. (1982). *Acta Cryst.* B**38**, 2825–2829.
- Desiraju, G. R. (1989). Crystal Engineering: The Design of Organic Solids, pp. 175–201. Amsterdam: Elsevier.
- Dey, A., Jetti, R. K. R., Boese, R. & Desiraju, G. R. (2003). CrystEngComm, 5, 248–252.
- Etter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256–262.
- Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
- Freytag, M., Jones, P. G., Ahrens, B. & Fischer, A. K. (1999). New J. Chem. 23, 1137–1139.
- Gray, L. & Jones, P. G. (2002). Z. Naturforsch. Teil B, 57, 61-72.
- North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.
- Ploug-Sørenson, G. & Andersen, E. K. (1985). Acta Cryst. C41, 613–615.
- Schultz, G., Kolonits, M., Hargittai, I., Portalone, G. & Domenicano, A. (1988). J. Mol. Struct. 176, 71–80.
- Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.